TEO2 Crystal
TEO2 Crystal
  • Laser Grade TeO2 raw material

  • Small sound attenuation

  • Large sound and light quality factor

  • Excellent sound and light characteristics

  • Strict Quality Control and Fast Delivery 

  • Competitive Price and Huge OEM Discount

  • Cutomized Products Available

  • Free Technical Support Always

Inquire for custom product
Product
Description
Literature
Part NO:Size(mm)Coating
CY-TEO2-0110x9x5AR Coated
CY-TEO2-0210x10x4.53AR Coated
CY-TEO2-0315x14x10AR Coated
CY-TEO2-0424x15.2x14.2AR Coated

Tellurium Dioxide (TeO2, Paratellurite) is  an excellent acousto-optic crystal  material, it is widely applied in the production of Acousto-optic modulator (AOM), Acousto-optical deflector (AOD), Acousto-optical tunable filter (AOTF), Laser Q-switches, RF spectrum analyzers in laser technology science and optoelectronic technology, because of its high figure of merit ,which depended on high elastic coefficient and high refractive index. TeO2 acousto-optic deflectors are more suitable for acousto-optic effects with high diffraction efficiency, long bandwidth and high beam deflection speed. TeO2 has been widely used to fabricate anomalous acousto-optic devices.


There are broad applications of TeO2 crystals. These crystals can be used in the field of astronomy, laser publishing, laser recorder and so on.


We can provide TeO2 crystals with customized shapes and sizes on all directions (110), (1-10), (001). Cylinder or cube shaped crystals are available. Please contact us for custom-made TeO2 crystals for your specific application.


Basic property

PropertyValue
Chemical formulaTeO2
Molar mass159.60 g/mol
ColorColorless
Density5.99 ± 0.03 /cm3
Melting Point733°C
Hardness3 – 4 Moh’s hardness scale
Thermal expansion10-6 К-1: α11 = 17.7; α22 = 17.7; α33 = 5.5
SymmetryTetragonal, 422 (D4)
Lattice distancesa = 4.8122 Å; c = 7.6157 Å
Transmittivity>70% at 633nm
Transmitting Range0.33 ~ 5.0 microns


Acoustooptical Properties: λ = 0.6328 μm

NsoundUsoundVsound 103 м/сNlightElightM1 10-7сm2·с/гM2 10-18с3/г
[100][100]2.98[010][100]0.0970.048
[100][100][010][001]22.910.6
[001][001]4.26[010][100]14234.5
[001][001][010][001]11325.6
[100][010]3.04[001]optional3.71.76
[110][110]4.21[-110][110]3230.802
[110][110][-110][001]16.23.77
[101][101]3.64[-101][010]10133.4
[010][010]2.98[-101][101]42.620.4
[110][-110]0.617[001]optional68.6793
[101][-101]2.08[010][100]76.477


TeO2 Modulator Properties

AОM main characteristicsTypical values for TeO2 modulators
Optical Wavelength Range514nm, 633nm, 1064nm, 1330nm
Optical Aperture0.3 mm – 3 mm
Operating ModeLongitudinal, axis (001)
Optical Rise Time9-200 nsec on beam diametr
Beam Separation (633 nm)10-30 mrad
Diffraction Efficiency70-85 %
Modulation Frequency (-3db)6-50 MHz


TeO2 Deflector Properties

АОD main characteristicsTypical values for TeO2 deflectors
Optical Wavelength Range540nm-530nm, 630nm-850nm, 700nm-1100nm, 1064nm, 1330nm
Optical Aperture1 mm – 10 mm
Operating ModeShear Wave, 3-15 degrees of axis (110)
Center frequency20- 200 MHz
Bandwidth20-100 MHz
Diffraction efficiency60-95%
Time aperture1-15 μs
Resolution (T.BW product)200-2000
Optical Rise Time9-200 nsec on beam diameter
Deflection Angle10-100 mrad
ΔDeflection Angle5-50 mrad
RF input power0,1- 2 Wt


TeO2 Tunable Filter Properties

АОTF main characteristicsTypical values for TeO2 AOTFs
Tuning Range450-750nm, 900-1200nm, 1200-2500nm, 2500-5000nm
Bandwidth0.5 nm – 15 nm
Operating ModeSlowshear, noncollinear propagation
Angular aperture2-10 degrees
Optical Aperture3×3 mm – 30×30 mm
Diffraction Efficiency70-85 %
RF power1-10 Wt


  • Two regimes of wide angle acousto-optic interaction in tellurium dioxide single crystals Voloshinov, Vitaly B.; Yukhnevich, Tatyana V. 2013 Applied Optics 52(24) 5912-5919

  • Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8dB/cm internal gain Vu, Khu; Madden, Steve 2010

  • Measurement of Low Temperature Specific Heat of Crystalline TeO2 for the Optimization of Bolometric Detectors Journal of Low Temperature Physics, Vol. 123, Nos. 5/6, 2001

  • Study on SAW Characteristics of AmorphousTeO2/128°Y-X LiNbO3 Structures 2007 IEEE Ultrasonics Symposium1894-1896

  • Physical properties and structural studies of lithium borophosphate glasses containing TeO2 Journal of Solid State Chemistry 270 (2019) 547–552

  • Growth of pure and doped TeO2 crystals for scintillating bolometers I. Dafinei et al. / Nuclear Instruments and Methods in Physics Research A 554 (2005) 195–200

  • Growth of TeO2 single crystals by the low temperature gradient Czochralski method with nonuniform heating Journal of Crystal Growth 384 (2013) 1–4

  • Investigations on the growth of Bi2TeO5 and TeO2 crystals Journal of Crystal Growth 197 (1999) 210—215

  • Time-of-flight mass spectroscopy of femtosecond and nanosecond laser ablated TeO2 crystals S. Beke et al. / International Journal of Mass Spectrometry 299 (2011) 5–8

  • Monte Carlo simulation of the Cherenkov radiation emitted by TeO2 crystal when crossed by cosmic muons Nuclear Instruments and Methods in Physics Research A 732 (2013) 338–341

  • The superposition of one- and two-phonon absorption and radiation in TeO 2 crystal N.N. Syrbu, R.V. Cre(u / Infrared Physics & Technology 37 (1996) 769-775

  • PtTe2: Potential new material for the growth of defect-free TeO2 single crystals Journal of Crystal Growth 310 (2008) 3077– 3083

  • Paramagnetic and diamagnetic defects in e- and UV-irradiated TeO2 single crystal Nuclear Instruments and Methods in Physics Research B 191 (2002) 261–265

  • Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay Journal of Crystal Growth 312 (2010) 2999–3008

×
Leave a message
Your name * :
Your E-mail * :
What kind of products/service you are looking for?
Success !
One of CRYSMIT team
menbers will contact you ASAP !