For 1064nm and 1030 Laser Application
Passive Q-switch for Nd: YAG laser
High thermal conductivity
High damage threshold(>500MW/cm2)
Excellent physicochemical properties
Radiation stability
Part NO: | Size(mm) | T0 | Coating |
CY:YAG-01 | 3x3 | T0=10% | AR/AR@1064nm |
CY:YAG-02 | 3x3 | T0=20% | AR/AR@1030nm |
CY:YAG-03 | 3x3 | T0=28% | Uncoated |
CY:YAG-04 | 3x3 | T0=35% | AR/AR@1064nm |
CY:YAG-05 | 3x3 | T0=35% | AR/AR@1064nm |
CY:YAG-06 | 3x3 | T0=60% | AR/AR@1064nm |
CY:YAG-07 | 3x3 | T0=60% | AR/AR@1175+1064+808nm |
CY:YAG-08 | 3x3 | T0=62% | AR/AR@1064nm |
CY:YAG-09 | 3x3 | T0=80% | AR/AR@1064nm |
CY:YAG-10 | 3x3 | T0=89% | AR/AR@1064nm |
CY:YAG-11 | 3x3 | T0=90% | AR/AR@1064nm |
CY:YAG-12 | 3x3 | T0=96% | AR/AR@1064nm |
CY:YAG-13 | 3x3 | T0=96% | AR/AR@1064+532nm |
CY:YAG-14 | 3x3 | T0=98% | AR/AR@1064+532nm |
CY:YAG-15 | 3x3x5 | T0=62% | AR/AR@1064nm |
CY:YAG-16 | 4.1x4.1 | T0=40% | AR/AR@1064nm |
CY:YAG-17 | 4.1x4.1 | T0=62% | AR/AR@1064nm |
CY:YAG-18 | 4.1x4.1 | T0=65% | AR/AR@1064+532nm |
CY:YAG-19 | 4x4 | T0=(14-16)% | AR/AR@1064nm |
CY:YAG-20 | 4x4 | T0=62% | AR/AR@1064+808nm |
CY:YAG-21 | 4x4 | T0=80% | AR/AR@1064nm |
CY:YAG-22 | 4x4 | T0=90% | AR/AR@1064nm |
CY:YAG-23 | 5x5 | T0=35% | AR/AR@1064nm |
CY:YAG-24 | 5x5 | T0=50% | AR/AR@1064nm |
CY:YAG-25 | Φ5 | T0=10% | AR@1064+HT@532nm |
CY:YAG-26 | 6.2x6.2 | T0=50% | AR/AR@1064nm |
CY:YAG-27 | Φ6 | T0=25% | AR/AR@1064nm |
CY:YAG-28 | Φ6 | T0=30% | AR/AR@1064nm |
CY:YAG-29 | Φ6 | T0=35% | AR/AR@1064nm |
CY:YAG-30 | Φ6 | T0=40% | AR/AR@1064nm |
CY:YAG-31 | Φ6 | T0=45% | AR/AR@1064nm |
CY:YAG-32 | Φ6 | T0=60% | Uncoated |
CY:YAG-33 | Φ6 | T0=60% | AR/AR@1064nm |
CY:YAG-34 | Φ6 | T0=62% | AR/AR@1064nm |
CY:YAG-35 | Φ6 | T0=89%卤1% | Uncoated |
CY:YAG-36 | Φ6 | T0=90% | AR/AR@1064nm |
CY:YAG-37 | Φ6.35 | T0=20% | Uncoated |
CY:YAG-38 | Φ6.35 | T0=30% | AR/AR@1064nm |
CY:YAG-39 | Φ6.35 | T0=35% | AR/AR@1064nm |
CY:YAG-40 | Φ6.35 | T0=36% | Uncoated |
CY:YAG-41 | Φ6.35 | T0=40% | AR/AR@1064nm |
CY:YAG-42 | Φ6.35 | T0=50% | Uncoated |
CY:YAG-43 | Φ6.35 | T0=55% | AR/AR@1064+532nm |
CY:YAG-44 | Φ6.35 | T0=60% | AR/AR@1064nm |
CY:YAG-45 | Φ6.35 | T0=70% | AR/AR@1064nm |
CY:YAG-46 | Φ6.35 | T0=90% | AR/AR@1064nm |
CY:YAG-47 | Φ7 | T0=88-90% | AR/AR@1064nm |
CY:YAG-48 | Φ7 | T0=20% | AR/AR@1064nm |
CY:YAG-49 | Φ7 | T0=35% | AR/AR@1064nm |
CY:YAG-50 | Φ7 | T0=88% | AR/AR@1064nm |
CY:YAG-51 | Φ8 | T0=24% | AR/AR@1064nm |
CY:YAG-52 | Φ8 | T0=70% | AR/AR@1064nm |
CY:YAG-53 | Φ8 | T0=80% | AR/AR@1064nm |
CY:YAG-54 | Φ8 | T0=80% | Uncoated |
CY:YAG-55 | Φ8 | T0=85% | Uncoated |
CY:YAG-56 | Φ8 | T0=85% | AR/AR@1064nm |
CY:YAG-57 | Φ8 | T0=90% | AR/AR@1064nm |
CY:YAG-58 | Φ8 | T0=95% | AR/AR@1064nm |
CY:YAG-59 | Φ10 | T0=10% | AR/AR@1064nm |
CY:YAG-60 | Φ10 | T0=40% | AR/AR@1064nm |
CY:YAG-61 | Φ10 | T0=60% | Uncoated |
CY:YAG-62 | Φ10 | T0=70% | Uncoated |
CY:YAG-63 | Φ10 | T0=70% | AR/AR@1064nm |
CY:YAG-64 | Φ10 | T0=75% | AR/AR@1064nm |
CY:YAG-65 | Φ10 | T0=80% | AR@1064+HT@532nm |
CY:YAG-66 | Φ10 | T0=80% | AR/AR@1064nm |
CY:YAG-67 | Φ10 | T0=90% | AR@1064+HT@532nm |
CY:YAG-68 | Φ10 | T0=90% | AR/AR@1064+808nm |
CY:YAG-69 | Φ10 | T0=92% | AR/AR@1064nm |
CY:YAG-70 | Φ12 | T0=90% | AR/AR@1064nm |
CY:YAG-71 | Φ12 | T0=95% | AR/AR@1064nm |
CY:YAG-72 | Φ12.5 | T0=60% | AR/AR@1064+532nm |
Cr4+:YAG (Cr:YAG) is an excellent crystal for passively Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 or other Nd and Yb doped lasers at wavelength from 0.8 to 1.2 μm. Because of its chemically stable, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, it will replace traditional material, such as LiF, organic Dye and color centers. Crysmit provides Cr4+:YAG with Cr4+ doping level from 0.5 mol% to 3 mol%. The size could be from 2 × 2 mm2 to 14 × 14 mm2 with length from 0.1 mm to 12 mm available. CRYSMIT can control the initial transmission from 10% to 92% according to customers' requirements.
Basic property
Property | Value |
Chemical formula | Cr4+:Y3Al5O12 |
Crystal structure | cubic – la3d |
Lattice parameters, Å | 12.01 |
Orientation | [100] or [110] < ±0.5° |
Mass density | 4.56 g/cm3 |
Mohs hardness | 8.5 |
Young’s modulus | 335 GPa |
Tensile strength | 2 GPa |
Melting point | 1970°C |
Thermal conductivity | 0.1213 |
Specific Heat/ (J·g-1·K-1) | 0.59 |
Thermal Expansion /(10-6/°C@25°C) | 7.8 <111> |
7.7 <110> | |
8.2 <100> | |
Thermal shock resistance parameter | 800 W/m |
Extinction Ratio | 25dB |
Poisson Ratio | 0.25 |
Refractive Index @1064 nm | 1.83 |
Charge compensating ion | Ca2+, Mg2+ |
Optical Properties
Optical Density | 0.1 to 0.8 |
Fluorescence lifetime | 3.4μs |
Concentrations | 0.5 mol % ~ 3 mol % |
Emission wavelength | 1350 nm ~ 1600 nm |
Absorption Coefficient | 1.0 cm-1 ~ 7 cm-1 |
Ground state absorption cross section | 4.3×10-18 cm2 |
Emission state absorption cross section | 8.2×10-19 cm2 |
Transmission | 10% to 90% |
Coatings | AR≤ 0.2% @1064nm |
Damage Threshold | > 500 MW / cm2 |
Size | 2x2-14x14 mm×20mm |
Orientation Tolerence | < 0.5° |
Thickness/Diameter Tolerance | ±0.05 mm |
Surface Flatness | <λ/8@632 nm |
Wavefront Distortion | <λ/4@632 nm |
Surface Quality | 10/5 |
Parallel | 10〞 |
Perpendicular | 5ˊ |
Clear Aperture | >90% |
Chamfer | <0.1×45° |
What is the wavelength of CR YAG laser?
Cr4+:YAG (Cr:YAG) is one of the best passive Q-switching crystal for high power lasers from 800nm to 1200nm.
What are the main applications of Cr:YAG ?
Passively Q-switched lasers for laser rangefinders, LIDAR, and LIBS systems.
Laser systems where short pulses are required.
Literature
Diode-pumped passively Q-switched and mode-locked Nd:YLF laser with Cr4+:YAG saturable absorber Pan, Shudi; Han, Kezhen; Wang, Hongmei; Fan, Xiuwei; He, Jingliang 2006 Chinese Optics Letters 4(7) 407-409
Application of the Z-scan technique for measuring nonlinear part of refractive index in Cr4+:YAG crystal with taking into account of the nonlinear absorption anisotropy Kir’yanov, Alexander V.; Barmenkov, Yuri O.; Aboites, Vicente; Il'ichev, Nikolai N. 2001 Advanced Solid State Lasers, Paper# TuB6
170-nm Tuning Range and Low-threshold Cr4+:YAG Double-clad Crystal Fiber Laser Li, Yi-Hsun; Lin, Yu-Chan; Hsu, Yu-Wei; Yang, Teng-I; Huang, Sheng-Lung 2020 CLEO: Science and Innovations, Paper# SF1P.5
Efficient Yb:YAG/Cr4+:YAG composite crystal passively Q-switched laser with peak power over 1 MW Ren, Yingying; Dong, Jun 2014 Advanced Solid State Lasers, Paper# ATu2A.43
First Mode-Locked Oscillation of Directly Laser-Diode-Pumped Cr4+:YAG Single-Crystal Fiber Laser Ishibashi, Shigeo 2015 The European Conference on Lasers and Electro-Optics, Paper# CA_6_6
Cr4+:YAG laser crystal grown by the laser- heated pedestal growth method Ishibashi, S.; Naganuma, K.; Yokohama, I.; Ishida, Y.; Kaino, T. 1996 Conference on Lasers and Electro-Optics, Paper# CWG3
Diode-pumped Cr4+:YAG single-crystal fiber laser Ishibashi, Shigeo; Naganuma, Kazunori 2000 Advanced Solid State Lasers, Paper# MD4
Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser J. Peng et al. / Optics Communications 285 (2012) 5334–5336
Passively Q-switched a-cut Nd:GdVO4 self-Raman laser with Cr:YAG J.Y. Peng et al. / Optics & Laser Technology 44 (2012) 2175–2177
Temperature dependence of optical properties in Nd/Cr:YAG materials Y. Honda et al. / Journal of Luminescence 148 (2014) 342–346
Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal H.-Y. Lin et al. / Optik 156 (2018) 260–264
Dynamics of a Q-switched Nd:YVO4/Cr:YAG laser under periodic modulationResults in Physics 12 (2019) 908–913